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Abstract

Investigating fourth order Taylor series expansions using undetermined coefficients and MatLab

1 Introduction

The study was undertaken as part of MMU’s Partial Differential Equations unit, under supervision of
Jon Shiach with the aim to better understand fourth-order Taylor Series expanions and the methods
surrounding them.

2 Numerical model

The fourth-order Taylor series expansion of the function f(x) can be written as (Shiach and Ratten-
bury, 2016)
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where h is the step length and fx(x), fxx(x), . . . denotes the partial derivatives of f(x) with respect to
x.

2.1 Finite-difference approximations

The fourth-order central difference approximation of fx(x) is given in Eq. (1)

fx(x) =
fi−2 − 8fi−1 + 8fi+1 − fi+2

12h
+O(h5). (1)

fx(x) =
f(x− 2h) − f(x− h) + f(x+ h) − f(x+ 2h)

12h
+O(h5). (2)
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3 Results

The approximate values of the foward, backward, second and fourth order finite-difference for ∂
∂xcos(x)

at fx(π/6) for different step lengths are shown in Table 1.

Table 1: The approximations for the forward, backward and central difference approximations of
∂
∂xcos(x) at fx(π/6).

h forward backward second fourth

0.5000 0.707972 0.952807 0.830389 0.864274
0.2500 0.794857 0.919208 0.857032 0.865913
0.1250 0.832563 0.894981 0.863772 0.866018
0.0625 0.849842 0.881082 0.865462 0.866025
0.0313 0.858073 0.873696 0.865884 0.866025

The absolute errors between the finite-difference approximations of ∂
∂xcos(x) at fx(π/6) for different

step lengths are shown in Table 2 and plotted on a loglog scale in Fig. 1.

Figure 1: Loglog plot of the absolute errors between the finite-difference approximations using different
values of h and the exact derivative of ∂

∂xe
x at x = 1.

Table 2: The absolute errors for the forward, backward and central difference approximations of ∂
∂xe

x

at x = 1.

h forward backward second fourth

0.5000 0.158053 0.086781 0.035636 0.001751
0.2500 0.071168 0.053182 0.008993 0.000112
0.1250 0.033463 0.028956 0.002254 0.000007
0.0625 0.016184 0.015056 0.000564 0.000000
0.0313 0.007953 0.007671 0.000141 0.000000

The results can be checked with log(α)−log(β)
log(h1)−log(h5) where α is error at the first step length, and β is

error at the fifth step length, the results of this calculation are shown in Table 3.
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Table 3: The approximation of N iterations of Taylor

forward backward second fourth

1.0782 0.8750 1.9955 3.9893

4 Conclusions

The study shows that error lowers significantly using higher order methods, In table 2 h = 0.0625 at
fourth order gives an error below 6 decimal places compared to 0.15 at h = 0.5 using first order. Table
3 gives an indication of what order each result is, with forward and backward close to 1, second close
to 2, and fourth close to 4. This accurately represents which order each data set represents.

References

Shiach, J. and Rattenbury, N. (2016). Runge-Kutta Methods and Computational Linear Algebra. Lec-
ture Notes. Manchester Metropolitan University.

A Appendix section

3



A.1 Matlab Code

1 % c l e a r s t u f f
2 c l e a r ; c l c ;
3 % I n i t i a l X Value
4 x=pi /6 ;
5 % Step S i z e s
6 h=[0.5 0 .25 0 .125 0 .0625 0 . 0 3 1 2 5 ] ;
7 % f func t i on
8 f = @(x ) s i n (x ) ;
9 % Exact F Value

10 f e xa c t = @(x ) cos ( x ) ;
11

12 %FD Approx
13 fw = ( f ( x+h)−f ( x ) ) . / h ; %Forward
14 bw = ( f ( x )−f (x−h) ) . / h ; %Backward
15 so = ( f ( x+h)−f (x−h) ) . / (2∗h) ; % Second
16 f o = ( f (x−2∗h)−8∗ f (x−h)+8∗ f ( x+h)−f ( x+2∗h) ) . / (12∗h) ; % Fourth
17 % Table 1 : Approximations
18 f p r i n t f ( ’ h forward backward second four th \n ’ )
19 f o r i =1:5
20 f p r i n t f ( ’%1.4 f %1.6 f %1.6 f %1.6 f %1.6 f \n ’ ,h ( i ) , fw ( i ) ,bw( i ) , so ( i ) , f o ( i ) )
21 end
22 % Error Ca l cu l a t i on s
23 fw e r r = abs ( f e xa c t ( x )−fw ) ;
24 bw err = abs ( f e xa c t ( x )−bw) ;
25 s o e r r = abs ( f e xa c t ( x )−so ) ;
26 f o e r r = abs ( f e xa c t ( x )−f o ) ;
27 % Table 2 : Error
28 f p r i n t f ( ’ h forward backward second \n ’ )
29 f o r i =1:5
30 f p r i n t f ( ’%1.4 f %1.6 f %1.6 f %1.6 f %1.6 f \n ’ ,h ( i ) , fw e r r ( i ) , bw err ( i ) , s o e r r ( i ) , f o e r r

( i ) )
31 end
32 % Figure 1 : Error
33 l o g l o g (h , fw err , ’ ro− ’ ,h , bw err , ’bˆ− ’ ,h , s o e r r , ’ ks− ’ ,h , f o e r r , ’ ’ )
34 x l ab e l ( ’h ’ )
35 y l ab e l ( ’Abs Error ’ )
36 l egend ( ’ forward ’ , ’ backward ’ , ’ second ’ , ’ f our th ’ , ’ l o c a t i o n ’ , ’ s outheas t ’ )
37

38 % Table 3 : N I t e r a t i o n s
39 format shor t
40 fw n = ( log ( fw e r r (1 ) )−l og ( fw e r r (5 ) ) ) / ( l og (h (1 ) ) − l og (h (5 ) ) )
41 bw n = ( log ( bw err (1 ) )−l og ( bw err (5 ) ) ) / ( l og (h (1 ) ) − l og (h (5 ) ) )
42 so n = ( log ( s o e r r (1 ) )−l og ( s o e r r (5 ) ) ) / ( l og (h (1 ) ) − l og (h (5 ) ) )
43 f o n = ( log ( f o e r r (1 ) )−l og ( f o e r r (5 ) ) ) / ( l og (h (1 ) ) − l og (h (5 ) ) )
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